

SQL Abstraction for NoSQL SQL Abstraction for NoSQL SQL Abstraction for NoSQL SQL Abstraction for NoSQL
DatabasesDatabasesDatabasesDatabases

SOLUTION BRIEF

SOLUTION BRIEF SQL FOR NOSQL DATA | 1

 www.cdata.com

SQL Abstraction for NoSQL
Databases

The growth of NoSQL continues to accelerate as the industry is increasingly forced to develop new

and more specialized data structures to deal with the explosion of application and device data. At the

same time, new data products for BI, Analytics, Reporting, Data Warehousing, AI, and Machine

Learning continue along a similar growth trajectory. Enabling interoperability between applications

and data sources, each with a unique interface and value proposition, is a tremendous challenge.

The world of relational databases grappled with the need for consistent interfaces decades ago, and

long since settled on standard means for communicating with data and application services. The

relational database driver standards like JDBC, ODBC and ADO.NET. Database vendors, developers,

and users have long relied on these common API standards, which has led to expansive ecosystems

of compatible tools and familiarity to users of nearly all skill levels.

While many products lack broad or deep NoSQL support, the majority of applications that consume

or generate data -- desktop tools, reporting servers, programming languages -- will implement robust

support for generic database access through one or more of these driver interfaces.

These universal driver interfaces speak a common language – ANSI SQL. Over the last 40 years, SQL

has established itself as the lingua franca of data access. While SQL does not marry perfectly with

NoSQL structures, SQL-based drivers based on established data standards like ODBC, JDBC, and

ADO.NET provide a powerful and ubiquitous bridge between NoSQL and modern and legacy

applications alike.

The following solution brief highlights various techniques employed by CData Software

(www.cdata.com) in providing SQL access to NoSQL data through their drivers. This paper

discusses a variety of mapping and flattening techniques, and continues with vendor examples that

highlight performance and usability differences between approaches.

SOLUTION BRIEF SQL FOR NOSQL DATA | 2

 www.cdata.com

Mapping SQL to NoSQL

Due to the flexibility of NoSQL, it is common for data structures to be returned as JSON objects,

arrays, or any combination of hierarchical data. In order to work with these structures in common BI,

Reporting, and ETL tools, the data objects typically need to be transformed into a tabular data

format. The CData Drivers include several facilities for mapping or flattening these data structures to

simplify integration with standard tooling.

These capabilities include:

• Extended ProjectionExtended ProjectionExtended ProjectionExtended Projection: requesting exactly the data you want from your tables.

• Horizontal FlatteningHorizontal FlatteningHorizontal FlatteningHorizontal Flattening: drilling down into embedded data (sub-documents and arrays).

• Vertical FlatteningVertical FlatteningVertical FlatteningVertical Flattening: treating embedded arrays of sub-documents as separate tables.

• Custom Schema DefinitionsCustom Schema DefinitionsCustom Schema DefinitionsCustom Schema Definitions: defining how the drivers view the NoSQL data.

• ClientClientClientClient----Side JSON FunctionsSide JSON FunctionsSide JSON FunctionsSide JSON Functions: manipulating the data returned to perform client-side

aggregation and transformation.

No single capability is appropriate for all NoSQL data sets, and there are costs and benefits

associated with each approach. The techniques that users should employ to work with large or

deeply-nested structures will be different than working with datasets which are less “object based”.

Furthermore, other vendors approach abstracting NoSQL to SQL differently. After outlining these

NoSQL capabilities, this guide will outline other common approaches, including:

• PresentingPresentingPresentingPresenting all data in a table definitionall data in a table definitionall data in a table definitionall data in a table definition: exposing all sub-documents and embedded arrays

as columns within a table definition.

• Creating parentCreating parentCreating parentCreating parent----child relationshipschild relationshipschild relationshipschild relationships: separating sub-documents and embedded arrays as

distinct tables and build parent-child relationships between the tables, as appropriate.

Ultimately, the best solution is the one that offers the most flexibility when it comes to NoSQL data

interpretation, allowing users to tailor the solution to meet their any potential integration scenarios.

SOLUTION BRIEF SQL FOR NOSQL DATA | 3

 www.cdata.com

Sample Document

To demonstrate the mapping and flattening capabilities it is useful to include example data. The

data structure below will be used in the examples that follow.

{
 "_id" : ObjectId("5780046cd5a397806c3dab38"),
 "address" : {
 "building" : "1007",
 "coord" : [-73.856077, 40.848447],
 "street" : "Morris Park Ave",
 "zipcode" : "10462"
 },
 "borough" : "Bronx",
 "cuisine" : "Bakery",
 "grades" : [
 {
 "date" : ISODate("2014-03-03T00:00:00Z"),
 "grade" : "A",
 "score" : 2
 }, {

 "date" : ISODate("2013-09-11T00:00:00Z"),
 "grade" : "A",
 "score" : 6
 }, {
 "date" : ISODate("2013-01-24T00:00:00Z"),
 "grade" : "A",
 "score" : 10
 }, {
 "date" : ISODate("2011-11-23T00:00:00Z"),
 "grade" : "A",
 "score" : 9
 }, {
 "date" : ISODate("2011-03-10T00:00:00Z"),
 "grade" : "B",
 "score" : 14
 }

],
 "name" : "Morris Park Bake Shop",
 "restaurant_id" : "30075445"
}

This data originated from a MongoDB database, however the tools and techniques presented here

can be used with any supported NoSQL data source.

SOLUTION BRIEF SQL FOR NOSQL DATA | 4

 www.cdata.com

Extended Projection

In SQL, projection generally refers to collecting a subset of columns from a table for use in an

operation. For example, issuing a SELECT query to pull a subset of columns from a table (SELECT

address, borough etc.). Extended projection is the process of extracting data from non-tabular or

hierarchical data sets.

Take the example of querying the included sample document from the root level. With NoSQL

structures the data represented in these top-level ‘columns’ may be object arrays or aggregates. The

default column list would include _id_id_id_id, addressaddressaddressaddress, boroughboroughboroughborough, cuisinecuisinecuisinecuisine, gradesgradesgradesgrades, namenamenamename, and restaurant_idrestaurant_idrestaurant_idrestaurant_id. The

addressaddressaddressaddress column is an example of an JSON object which would be returned as an aggregate with

standard projection.

Through extended projection, the CData Drivers allow users to drill down into the sub-documents and

embedded arrays (using dot notation) without having to issue complex joins or subqueries. By

including _id_id_id_id, address.streetaddress.streetaddress.streetaddress.street, and grades.0grades.0grades.0grades.0 as columns in the projection, users can expose a more

atomic model of the data, accessing the traditionally exposed _id_id_id_id element as well as the streetstreetstreetstreet

element of the addressaddressaddressaddress sub-document and the entire first element in the embedded gradesgradesgradesgrades array.

SELECT
 [_id],

 [address.street],
 [grades.0]
FROM restaurants;

The driver returns the value for each field that contains data. If the field does not exist in a given

document, the driver returns NULL. This feature is useful whenever the structure of the data source is

known and when users can issue distinct SQL Queries.

However, BI and ETL tools do not typically offer direct query access, particularly for reporting and

visualization. In those instances, other flattening techniques should be used.

Horizontal Flattening

When a client does not have granular control of SQL Queries, flattening techniques should be used to

map NoSQL to a tabular representation. The CData Drivers handle this process though Connection

String settings.

SOLUTION BRIEF SQL FOR NOSQL DATA | 5

 www.cdata.com

The Flatten ArraysFlatten ArraysFlatten ArraysFlatten Arrays and Flatten ObjectsFlatten ObjectsFlatten ObjectsFlatten Objects connection properties allow users to control how objects and

array data is parsed in order to dynamically generate table schema for NoSQL data. These settings

configure how data is horizontally flattened, creating a single schema for all of the documents

(including embedded data) in a given table.

Horizontal flattening can be very useful for smaller data sets or those without deeply-nested object

hierarchies. If the NoSQL data includes many sub-documents, large embedded arrays, or deeply

nested data, then horizontal flattening may not be the best solution. In these cases, horizontal

flattening may generate tables with too many columns, resulting in data sets that are overly granular

and difficult to work with.

In the examples below, we display the expected results, based on various values for Flatten Arrays

and Flatten Objects, for the following query:

SELECT *
FROM restaurants;

Default Behavior (FlattenObjects=False;)

Without any horizontal flattening, the Driver discovers seven columns for the table: _id_id_id_id, addressaddressaddressaddress,

boroughboroughboroughborough, cuisinecuisinecuisinecuisine, gradesgradesgradesgrades, namenamenamename, and restaurant_idrestaurant_idrestaurant_idrestaurant_id. Embedded data in the document is returned in a

raw, aggregate form.

_id address borough cuisine grades name restaurant_id

5780046
…

{ "building" :
"1007", "coord" :
[-73.856077,
40.848447],
"street" : …

Bronx Bakery

[{"date" : ISODate("2014-
03-03T00:00:00Z"),
"grade" : "A", "score" : 2 },
{ "date" : ISODate("2013-
09-11T00:00:00Z"), …

Morris
Park
Bake
Shop

30075445

FlattenObjects=True;

If a user sets FlattenObjectsFlattenObjectsFlattenObjectsFlattenObjects to "True", the number of columns expands as the embedded addressaddressaddressaddress

sub-document is flattened. Without any changes to FlattenFlattenFlattenFlattenArraysArraysArraysArrays, any embedded arrays or arrays of

documents will be returned as aggregates:

SOLUTION BRIEF SQL FOR NOSQL DATA | 6

 www.cdata.com

_id address.building address.coord address.street address.zipcode borough …

5780046… 1007
[-73.856077,
40.848447]

Morris Park Ave 10462 Bronx …

FlattenArrays=2;

The FlattenArraysFlattenArraysFlattenArraysFlattenArrays property determines how many items in an embedded array of sub-documents are

treated as individual columns. By setting FlattenArraysFlattenArraysFlattenArraysFlattenArrays to "2", the driver extracts the first two items in

the embedded arrays of a document.

_id address borough cuisine grades.0 grades.1 …

5780046…

{ "building" : "1007",
"coord" : [-73.856077,
40.848447], "street" :
"Morris Park Ave",
"zipcode" : "10462" }

Bronx Bakery

{ "date" :
ISODate("2014-03-
03T00:00:00Z"),
"grade" : "A",
"score" : 2 }

{ "date" :
ISODate("2013-09-
11T00:00:00Z"),
"grade" : "A",
"score" : 6 }

…

FlattenArrays=1;FlattenObjects=True;

With FlattenArraysFlattenArraysFlattenArraysFlattenArrays set to "1" and FlattenObjectsFlattenObjectsFlattenObjectsFlattenObjects set to “True” the driver will extract the first item in the

embedded arrays of a document and flatten any embedded sub-documents.

_id
address.
building

address.
coord.0

address.
street

address.
zipcode

…
grades.
0.date

grades.
0.grade

grades.
0.score

…

57800... 1007
-
73.856077

Morris Park
Ave

10462 …
2014-03-
03...

A 2 …

Any columns that are exposed from horizontal flattening are available for use in INSERT and

UPDATE statements as well, allowing you to add or update individual fields within sub-documents

and arrays. This approach works well for clients who know the structure of the data in advance and

in data sets where the structure is not deeply nested.

Clearly, preconfiguring the driver prior to integration offers a richer experience when working with

NoSQL data in tools and applications that expect a more traditional RDBMs Data Model.

SOLUTION BRIEF SQL FOR NOSQL DATA | 7

 www.cdata.com

Vertical Flattening

NoSQL databases frequently contain an array (or arrays) of sub-documents. While it is possible to

drill down into these sub-documents using horizontal flattening, that approach presents problems

when dealing with deeply nested data. Another approach for dealing with embedded arrays is to treat

them as separate tables of data. This process is known as vertical flattening and doing so helps to

build a relational model between different 'types' of documents in a hierarchy.

Using the included sample document, users could retrieve an array of grades as a separate table

using the following query:

SELECT
 *
FROM [restaurants.grades];

This query would return the following data:

date grade score

2014-03-03T00:00:00Z A 2

2013-09-11T00:00:00Z A 6

2013-01-24T00:00:00Z A 10

2011-11-23T00:00:00Z A 9

2011-03-10T00:00:00Z B 14

Users may also want to include information from the base restaurants table. This can be

accomplished with a join. Flattened arrays can be joined with the root document.

The CData Drivers expect that the left part of the join will be the array document that will be vertically

flattened. Set the SupportEnhancedSQLupportEnhancedSQLupportEnhancedSQLupportEnhancedSQL connection property to false to join nested documents.

SOLUTION BRIEF SQL FOR NOSQL DATA | 8

 www.cdata.com

For example:

SELECT
 [restaurants].[_id], [restaurants.grades].*
FROM
 [restaurants.grades]
JOIN
 [restaurants]
WHERE
 [restaurants].[name] = 'Morris Park Bake Shop' ;

This query would return the following:

_id date grade score

5780046cd5a397806c3dab38 2014-03-03T00:00:00Z A 2

5780046cd5a397806c3dab38 2013-09-11T00:00:00Z A 6

5780046cd5a397806c3dab38 2013-01-24T00:00:00Z A 10

5780046cd5a397806c3dab38 2011-11-23T00:00:00Z A 9

5780046cd5a397806c3dab38 2011-03-10T00:00:00Z B 14

Custom Schema Definitions

In order to create a relational facade on top of NoSQL data, a table schema must exist. The schema

can be created dynamically through flattening via the Connection properties, or by pre-defining a

schema. A pre-defined schema is another option for drilling down into data when it is impossible to

maintain full control of the SQL queries constructed.

A Custom Schema gives users the ability to define the SQL structure that should be used when

accessing the underlying NoSQL source. For example, using our sample data a user may want to

define a table with _id_id_id_id (as the primary key), namenamenamename, zipcodezipcodezipcodezipcode, and latest_gradelatest_gradelatest_gradelatest_grade (the first entry in the

grades fields). The resulting schema would look like this:

SOLUTION BRIEF SQL FOR NOSQL DATA | 9

 www.cdata.com

<rsb:script xmlns:rsb="http://www.rssbus.com/ns/rsbscript/2">
<rsb:info title="StaticRestaurants"
 description="Custom Schema for the MongoDB restaurants data set.">
 <!-- Column definitions -->
 <attr name="id" xs:type="int32" iskey="true" other:bsonpath="$._id" />
 <attr name="name" xs:type="string" other:bsonpath="$.name" />

 <attr name="zipcode" xs:type="string" other:bsonpath="$.address.state" />
 <attr name="latest_grade" xs:type="string" other:bsonpath="$.offices.grade" />
</rsb:info>

<rsb:set attr="collection" value="companies" />
</rsb:script>

Schema files are saved to disk alongside the driver and referenced through the connection

properties1. The driver will expose the defined tables based on the title attribute of rsb:info. Users can

also query the data explicitly by using the title as the table name in a SQL query:

SELECT
 id, latest_grade
FROM
 StaticRestauraunts

By defining a schema, users gain granular control over data in ways not commonly supported in BI,

reporting, and ETL tools, facilitating the use of visualization, transformation, and extraction features

of those same tools. Custom Schemas also allow users to define different views of the data stored in

a single table enabling users to take full advantage of the NoSQL database structure where a given

table contains documents where relevant fields are differentiated by type definition.

Client-Side JSON Functions

NoSQL data structures are often represented as JSON structures. The CData Drivers support SQL

functions for extracting data from JSON structures. A few examples of the JSON functions are

highlighted below. For a complete list of supported functions reference the driver help

documentation.

The following example uses the included sample document to extract values contained in the

'Students' table:

1 Other techniques for embedding schema definitions are also available, but are beyond the scope of this paper.

SOLUTION BRIEF SQL FOR NOSQL DATA | 10

 www.cdata.com

{
 id: 123456,
 ...,
 grades: [
 { "grade": "A", "score": 96 },
 { "grade": "A", "score": 94 },

 { "grade": "A", "score": 92 },
 { "grade": "A", "score": 97 },
 { "grade": "B", "score": 84 }
],
 ...
}

JSON_EXTRACT

The JSON_EXTRACT function can extract individual values from a JSON object. The following query

returns the values shown below based on the JSON path passed as the second argument to the

function:

SELECT
 JSON_EXTRACT(grades,'[0].grade') AS Grade,
 JSON_EXTRACT(grades,'[0].score') AS Score
FROM Students;

This query returns the following data:

Grade Score

A 96

JSON_SUM

The JSON_SUM function returns the sum of the numeric values of a JSON array within a JSON

object. The following query returns the total of the values specified by the JSON path passed as the

second argument to the function:

SELECT
 Name,
 JSON_SUM(score,'[x].score') AS TotalScore
FROM Students;

SOLUTION BRIEF SQL FOR NOSQL DATA | 11

 www.cdata.com

DOCUMENT

The DOCUMENT function can be used to retrieve the entire document as a JSON string. See the

following query and its result as an example:

SELECT
 DOCUMENT(*)
FROM Students;

The query above returns each document in the table as a single string. E.x:

DOCUMENT

{ "_id" : ObjectId("5780046cd5a397806c3dab38"), "address" : { "building" : "1007", "coord" : [-73.856077,
40.848447], "street" : "Morris Park Ave", "zipcode" : "10462" }, "borough" : "Bronx", "cuisine" : "Bakery",
"grades" : [{ "date" : ISODate("2014-03-03T00:00:00Z"), "grade" : "A", "score" : 2 }, { "date" : ISODate("2013-09-
11T00:00:00Z"), "grade" : "A", "score" : 6 }, { "date" : ISODate("2013-01-24T00:00:00Z"), "grade" : "A", "score" :
10 }, { "date" : ISODate("2011-11-23T00:00:00Z"), "grade" : "A", "score" : 9 }, { "date" : ISODate("2011-03-
10T00:00:00Z"), "grade" : "B", "score" : 14 }], "name" : "Morris Park Bake Shop", "restaurant_id" : "30075445" }

SQL to NoSQL Comparison

In order to choose the best approach for your integration, it is important to understand the various

approaches to modeling NoSQL through SQL. CData provides a high degree of granularity and

control when working with NoSQL data, however other vendors choose a different approach.

The following section will highlight the ways in which other popular vendors approach NoSQL

mapping in the following scenarios:

• Requesting All Requesting All Requesting All Requesting All Table Table Table Table DataDataDataData: comparing the results of requesting all available data as a table

(e.g. SELECT * FROM restaurants).

• Embedded Arrays as Separate TablesEmbedded Arrays as Separate TablesEmbedded Arrays as Separate TablesEmbedded Arrays as Separate Tables: comparing the results of sending JOIN queries to

work with a table and the embedded data array(s).

• Embedded Arrays & SubEmbedded Arrays & SubEmbedded Arrays & SubEmbedded Arrays & Sub----Documents as TaDocuments as TaDocuments as TaDocuments as Table Elementsble Elementsble Elementsble Elements: comparing the results of working

with embedded array(s) as elements within a table.

SOLUTION BRIEF SQL FOR NOSQL DATA | 12

 www.cdata.com

Requesting All Table Data

The most common way to retrieve all of the data in a traditional relational database table is to submit

a SELECT * query. To compare techniques, we will display the results of a SELECT * ... query

from various ODBC Drivers using their default connection properties.

There are 3 distinct approaches used by the top industry vendors.

The Drivers from Vendor 1 (V1) parse the grades array and address objects into separate tables

linked by a parent-child relationship. The result of the select returns the following:

BOROUGH RESTAURANT_ID _ID CUISINE NAME

Bronx 30075445 5780046CD5A397806C3DAB38 Bakery
Morris Park Bake
Shop

Brooklyn 30112340 5780046CD5A397806C3DAB39 Hamburgers Wendy'S

Manhattan 30191841 5780046CD5A397806C3DAB3A Irish
Dj Reynolds Pub And
Restaurant

Brooklyn 40356018 5780046CD5A397806C3DAB3B American Riviera Caterer

The drivers from Vendor 2 (V2) similarly provide a subset of data when issuing a SELECT statement.

The V2 drivers parse the grades and address.coord arrays as separate linked tables. The result is:

_id
address_
building

address_
street

address_
zipcode

borough cuisine name
restaurant
_id

57800… 1007
Morris
Park Ave

10462 Bronx Bakery
Morris Park
Bake Shop

30075445

57800… 469
Flatbush
Avenue

11225 Brooklyn Hamburgers Wendy'S 30112340

57800… 351
West 57
Street

10019 Manhattan Irish
Dj Reynolds
Pub And …

30191841

57800… 2780
Stillwell
Avenue

11224 Brooklyn American
Riviera
Caterer

40356018

SOLUTION BRIEF SQL FOR NOSQL DATA | 13

 www.cdata.com

While creating separate tables distinguishes the different hierarchies in a NoSQL database, it can

have significant performance and usability drawbacks when querying data from parent and child

tables. The CData Drivers expose the most data by default, flattening the address object and drilling

down to retrieve the fields available in the elements of the grades array.

_id
addres
s.bui…

address.
coord.0

address.
coord.1

address.
street

addres
s.zip…

restaur
ant_id

grades.
0.date

grades.
0.grade

…

57800… 1007 -73.856… 40.8…
Morris
Park Ave

10462
300754
45

2014-
03-03…

A …

57800… 469 -73.961… 40.6…
Flatbush
Avenue

11225
301123
40

2014-
12-30…

A …

57800… 351 -73.985… 40.7…
West 57
Street

10019
301918
41

2014-
09-06…

A …

57800… 2780
-
73.982...

40.5…
Stillwell
Avenue

11224
403560
18

2014-
06-10…

A …

Embedded Arrays as Separate Tables

In the sample data, each document in the restaurants table contains an array of embedded

documents in the grades element. This data represents the different grades a restaurant has

received over time. As this is a hierarchy, the embedded documents capture the relationships

between data by storing data in a single document structure.

By default, the drivers from Vendor 1 and 2 create a schema where the embedded documents are

only recognized as separate tables (referred to as virtual tables and child tables respectively). They

automatically create a table schema where the grades table shares a foreign key relationship with

the restaurants table. The CData Drivers offer an additional level of control. They maintain the

embedded documents, as elements within the original document, yet still allow users to treat the

embedded values as separate tables.

Regardless of how the schemas are defined, all of the drivers are able to perform JOIN queries to

retrieve related data between the tables.

SOLUTION BRIEF SQL FOR NOSQL DATA | 14

 www.cdata.com

Consider the following desired result-set:

restaurant_id date grade score P_id

30075445 2014-03-03T00:00:00.000Z A 2 568c37b748ddf53c5ed98932

30075445 2013-09-11T00:00:00.000Z A 6 568c37b748ddf53c5ed98932

30075445 2013-01-24T00:00:00.000Z A 10 568c37b748ddf53c5ed98932

30075445 2011-11-23T00:00:00.000Z A 9 568c37b748ddf53c5ed98932

30075445 2011-03-10T00:00:00.000Z B 14 568c37b748ddf53c5ed98932

Queries and Performance

The queries required by the drivers to retrieve each grade as a separate row are relatively similar.

Each driver uses an implicit JOIN to aggregate data. However, it is worth noting that the drivers from

Vendors 1 and 2 require the use of a WHERE clause to identify the relationship between the two

tables.

The CData Drivers on the other hand use vertical flattening (where child arrays are recognized as

fields within the parent table, but can be treated as separate tables) to manage JOIN queries. The

drivers from V1 and V2 treat the grades array as a separate table by default, meaning that data from

both tables are pulled into memory and the drivers perform the JOIN client-side.

Driver Time (seconds) Query (returns all grades for approximately 10 million restaurants)

CData 252.9 (+35% - +59%)
SELECT [restaurants].[restaurant_id],
[restaurants.grades].* FROM[restaurants.grades] JOIN [restaurants]

Vendor1 341.5
SELECT restaurants_grades.*, restaurants.restaurant_id
FROM restaurants_grades, restaurants
WHERE restaurants._ID = restaurants_grades.restaurants_id

Vendor2 401.2
SELECT restaurants_grades.*, restaurants.restaurant_id
FROM restaurants_grades, restaurants
WHERE restaurants._ID = restaurants_grades._id

SOLUTION BRIEF SQL FOR NOSQL DATA | 15

 www.cdata.com

Embedded Arrays & Sub-Documents as Table Elements

Document databases frequently contain embedded BSON/JSON objects and arrays as individual

elements. The CData drivers are the only drivers that are capable of easily handling this type of

structure. Consider the following result-set:

restaurant_id grades.0.grade grades.1.grade grades.2.grade grades.3.grade grades.4.grade

123456780 A A A A A

123456781 B B B B B

123456782 C C C C C

With the CData drivers users can submit a free-form query to request the data as described above.

The drivers use dot-notation to interpret requests for individual array objects and fields within sub-

documents.

For example:

SELECT

 [restaurant_id], [grades.0.grade], [grades.1.grade], [grades.2.grade], [grades.3.grade], [grades.4.grade]
FROM

 [restaurants]

Other drivers interpret arrays of documents as separate tables. This means that users must perform

JOIN queries in order to retrieve both restaurant and grades data. This interpretation means that

there is no simple way to retrieve the grades for a given restaurant in a single row.

SOLUTION BRIEF SQL FOR NOSQL DATA | 16

 www.cdata.com

Conclusion

The CData approach to standardizing NoSQL integration builds upon the ubiquitous support for and

familiarity with ODBC, JDBC, and similar standards. By wrapping data access in standards-compliant

drivers, CData enables straightforward integration in any context where an RDBMS database would

be used.

As Big Data continues to usher in a new era of analytics and cognitive computing, users are tasked

with processing ever larger datasets. Data is now commonly aggregated from across multiple data

sources and processing is federated across multiple nodes. As a result, the impact of seemingly

small architectural differences can have a major impact on the performance of enterprise systems.

By offering granular control over NoSQL data interpretation, the CData Drivers exhibit a level of depth

and flexibility unmatched by other products. These distinctions are supported by performance

metrics executed when using the CData Drivers to process large amounts of NoSQL data.

While performance is beyond the scope of this paper, users should be cognizant of performance

characteristics of any driver planned for production. For a complete picture of the data interpretation

and performance features that set the CData Drivers apart, please refer to

www.cdata.com/tech/bigdata/

For more information about CData Software, please visit the company website at: www.cdata.com.

 www.cdata.com

For a complete list of current NoSQL Drivers, go to: www.cdata.com/drivers/

CData Software (www.cdata.com) is a leading provider of data access and connectivity solutions. We specialize in

the development of Drivers and data access technologies for real-time access to on-line or on-premise applications,

databases, and Web APIs. Our drivers are universally accessible, providing access to data through established data

standards and application platforms such as ODBC, JDBC, ADO.NET, ODATA, SSIS, BizTalk, Excel, etc.

Our goal is to simplify the way you connect to data. We offer a straightforward approach to integration, with easy-

to-use, data providers, drivers, and tools accessible from any technology capable of interacting with major database

standards. This approach to integration allows businesses to realize the tremendous benefits and costs savings of

integration while reducing complexity and expense.

